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Abstract. In the SMT(LRA) learning problem, the goal is to learn
SMT(LRA) constraints from real-world data. To improve the scalabil-
ity of SMT(LRA) learning, we present a novel approach called SHREC
which uses hierarchical clustering to guide the search, thus reducing run-
time. A designer can choose between higher quality (SHREC1) and lower
runtime (SHREC?2) according to their needs. Our experiments show a
significant scalability improvement and only a negligible loss of accuracy
compared to the current state-of-the-art.
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1 Introduction

Since the invention of effective solving procedures for the Boolean Satisfiabili-
ty (SAT) problem [20], many formalisms for problem modeling have been intro-
duced over the decades, including but not limited to Linear Programming (LP),
Quantified Boolean Formulas (QBF), and Satisfiability Modulo Theories (SMT)
(cf. [5] for an overview). With the progressive development of highly specialized
solving engines for these domains [8,7], it has become possible to tackle critical
problems like verification [11]. Also, exact logic synthesis [10], optimal planning,
and other optimization problems [9] could be approached in a more effective
manner (again, cf. [5] for an overview).

A trade-off between SAT’s efficient solvers and SMT’s expressive power is Sat-
isfiability Modulo Linear Real Arithmetic (SMT(LRA)) [5]. It combines propo-
sitional logic over Boolean variables and linear arithmetic over real-valued vari-
ables. SMT(LRA) has a wide variety of applications, including formal verifica-
tion [6,2], AI planning and scheduling [21], and computational biology [24].

* The research reported in this paper has been supported by the German Research
Foundation DFG, as part of Collaborative Research Center (Sonderforschungsbere-
ich) 1320 EASE — Everyday Activity Science and Engineering, University of Bremen
(http://www.ease-crc.org/). The research was conducted in sub-project P04.
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Generating SMT(LRA) models? by hand is both time-consuming and error-
prone and requires detailed domain-specific knowledge. Nevertheless, in many
cases, both satisfying and unsatisfying examples of model configurations can
be extracted from measurements of the modeling domain. In these cases, the
actual modeling task can be automated by an approach called concept learn-
ing. Concept learning has a long history in artificial intelligence, with Probably
Approzimately Correct (PAC) learning [23], inductive logic programming [16],
and constraint programming [4]. These approaches usually focus on pure Boolean
descriptions, i. e. SAT formulae. More recently, [13] introduced SMT(LRA) learn-
ing, which is the task of learning an SMT(LRA) formula from a set of satisfying
and unsatisfying examples.

Alternatively, SMT(LRA) learning can also be formulated as a variation on
the programming by example problem known from the Syntaz-Guided Synthe-
sis (SyGuS) framework. Most solvers in this area (e.g. [22,1,18,3]) are based on
enumeration of possible solutions to be able to tackle a wide variety of syntac-
tic constraints. This does, however, lead to overly complicated and inconvenient
reasoning on continuous search spaces such as SMT(LRA). Apart from that,
the problems have further subtle differences, e.g. accuracy of the solutions has
higher significance in the concept learning setting.

On top of defining the SMT(LRA) learning problem, [13] also introduced
an exact algorithm called INCAL. As the first of its kind, INCAL naturally
comes with certain drawbacks in terms of runtime and is therefore not applicable
to learn large models, which are required by most real-world concept learning
applications (e.g. [15,12]).

Our contribution in this work is a novel approach for SMT(LRA) learning
which uses Hierarchical Clustering on the examples to guide the search and thus
speed up the model generation process. We call our general approach SHREC
(SMT(LRA) learner with hierarchical example clustering) and introduce two
algorithms SHREC1 and SHREC2 based on this idea. SHRECI aims at a higher
accuracy of the solution and therefore requires more runtime than SHREC2.
SHREC?2 instead follows a very fast and scalable method with minor losses of
accuracy. Therefore, we provide the users, i.e. the model designers, with the
possibility to choose between maximizing the accuracy of the learned model or
improving runtime of the generation process so that also larger models can be
learned in a reasonable time frame.

The remainder of this paper is structured as follows: To keep this paper
self-contained, Section 2 gives an overview of related work and preliminaries in
the area of SMT(LRA) learning as well as hierarchical clustering. Section 3 and
Section 4 propose our main ideas, i.e. novel approaches for SMT(LRA) learning
to tackle larger and more complex models using methods from machine learning.
In Section 5 we conduct an experimental evaluation where we compare our results
to the state-of-the-art. Section 6 concludes the paper.

4 The term model is often used to refer to a satisfying assignment to some logical
formula. In the context of this paper however, model refers to a logical formula that
describes a system in the real world.
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2 Related Work & Preliminaries

In this section, we give an overview of relevant related work and introduce con-
cepts that we utilize in the remainder of this work.

2.1 SMT(LRA) Learning

The problem of SMT(LRA) learning has first been introduced in [13]. The goal
is to find an SMT(LRA) formula which describes some system in the real world.
However, no formal representation of the system is available. Instead, a set of
measurements is given. In the following, these measurements are called examples.
It is further assumed, that there exists an SMT(LRA) formula ¢* that accurately
describes the system. The problem of SMT(LRA) learning is now defined as
follows:

Definition 1. Given a finite set of Boolean variables B := {b1,...,b,} and a
finite set of real-valued variables R == {ry,...,rm} together with a finite set of
examples E. Each example e € E = (a.,d*(a.)) is a pair of an assignment
and a label. An assignment a. : BUR — {T, 1} UR maps Boolean variables
to true (T) or false (L), and real-valued variables to real-valued numbers. The
label ¢*(ae) is the truth value obtained by applying a. to ¢*. We call an example
positive if ¢*(a.) = T and negative otherwise. We denote the sets of positive
and negative examples by ET and E*, respectively.

The task of SMT(LRA) learning is to find an SMT(LRA) formula ¢ which
satisfies all elements in ET, but does not satisfy any element in B+, which can
be written as Ve € E : ¢p(ae) = ¢*(ae).

Ezample 1. Consider the SMT(LRA) formula
¢)*(b1,7“1) = (ﬁbl V (—0.5 -y < —1)) AN (bl V (1 -1 < O))
A possible set of examples would be

E = {({bl — T,Tl — 0}, J_), ({bl — T,’I“l — 2.5},—|—)7
({br— Lyry =2} 1), ({by— L,y — —0.6},T)}

We call an algorithm that tackles the task of finding an unknown SMT(LRA)
formula to a given set of examples, i.e. finding a solution to an instance of the
aforementioned problem, learner.

Each learner must operate on a given set of possible target formulae, called
the hypothesis space @. Similar to [13], we focus on CNF' formulae as our hy-
pothesis space.

Definition 2. A CNF formula over a set of variables B U R is a conjunction
of clauses, a clause is a disjunction of literals and a literal can be a Boolean
variable b € B, its negation, or a linear constraint over the real variables. Linear
constraints (also called halfspaces) have the form ay-r1 + -+ ap - 1 < d with
real constants a; and d and real variables r; € R.
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Additionally, we define the cost ¢ of a CNF formula with a given number
of clauses k and (not necessarily unique) halfspaces h as ¢ = wg - k 4+ wy, - h,
where wy and wy, are weights associated with clauses and halfspaces, respectively.
The cost is a measure for the size and complexity of a formula and can be tuned
to focus more on clauses or halfspaces.

A learner tries to find an SMT(LRA) formula ¢ € . We say that an example
e satisfies a formula ¢ iff ¢(a.) = T and is consistent with ¢ iff ¢(a.) = ¢*(a.).
Using these definitions, the goal of SMT(LRA) learning is to find a formula ¢
that is consistent with all examples, i. e. as mentioned before, one that is satisfied
by all positive examples and unsatisfied by all negative ones.

Ezample 2. Consider the example set E from Example 1 again. A possible CNF
solution to those examples would be

¢ = (b V(0.5 11 < —0.25)) A (b V (=171 < —2.1))

Obviously, ¢* is also a feasible solution, but might not be found by the learner
which only knows about the example set F.

Since ¢* is not known to the learner and the example set E is usually non-
exhaustive, it can not be expected that the learner finds a model equivalent
to ¢*. It should, however, be as close as possible. This leads to the measure of
accuracy.

Definition 3. Given two example sets Eipqin and Ei.q which were indepen-
dently sampled from the (unknown) SMT(LRA) formula ¢*, the accuracy of a
formula ¢, which was learned from FEipqin, is the ratio of correctly classified ex-
amples in Eieg.

Generally, finding any formula for a given example set is not a hard problem.
One could construct a simple CNF that explicitly forbids one negative example
in each clause and allows all other possible assignments. However, such a formula
would have numerous clauses and would not generalize well to new examples,
yielding a low accuracy. To avoid such cases of overfitting, a smaller target
formula, i. e. one with lower cost, should generally be preferred over a larger i.e.
more expensive one.

2.2 INCAL

In addition to introducing the problem of SMT(LRA) learning, [13] also pre-
sented the first algorithm to tackle it, called INCAL. INCAL addresses the
SMT(LRA) learning problem by fixing the number of clauses k and the number
of halfspaces h and then encodes the existence of a feasible CNF with those
parameters in SMT(LRA). If no such formula exists, different values for k and h
need to be used. The order in which to try values for k and h can be guided by
the cost function wy - k + wy, - h.
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INCAL’s SMT encoding uses Boolean variables to encode which clauses con-
tain which literals, real variables for the coefficients and offset of all halfspaces,
and Boolean auxiliary variables encoding which halfspace and clause are satisfied
by which example. It consists of the definition of those auxiliary variables and
a constraint enforcing the consistency of examples with the learned formula. To
cope with a high number of examples, INCAL uses an iterative approach and
starts the encoding with only a small fraction of all variables. After a solution
consistent with this subset has been found, additional conflicting examples are
added.

The complexity of the learning problem does however not exclusively stem
from the size of the input. Another, arguably even more influential factor is the
complexity of the learned formula. If an example set requires numerous clauses
or halfspaces, it will be much harder for INCAL to solve.

So far, we have discussed the state-of-the-art related work in SMT(LRA)
learning. In this work, we present a new SMT(LRA) learner which incorporates
a hierarchical clustering technique. To keep this paper self-contained, we give
some preliminaries about clustering in the following section.

2.3 Hierarchical Clustering

In machine learning, the problem of clustering is to group a set of objects into
several clusters, such that all objects inside the same cluster are closely related,
while all objects from different clusters are as diverse as possible (cf. [14] for
an overview). To describe the similarity between objects, a distance metric is
needed.

Often, objects are described by the means of a vector (vi,...,v,) of real
values. Typical distance metrics of two vectors v, w are (1) the Manhattan dis-
tance (L1 norm) dist(v,w) = Y. |v; — w;| , (2) the Euclidean distance (Lo
norm) dist(v, w) = /Y., (v; — w;)?, or (3) the Lo norm dist (v, w) = maz(|v;—

A common approach to clustering is hierarchical clustering [19]. The main
idea of hierarchical clustering is to build a hierarchical structure of clusters called
a dendrogram. A dendrogram is a binary tree annotated with distance informa-
tion. Each node in the dendrogram represents a cluster. Each inner node thereby
refers to the union of clusters of its two children; with leaf nodes representing
clusters that contain exactly one vector. This way, the number of contained vec-
tors per node increases in root direction with the root node itself containing
all vectors given to the clustering algorithm. Each inner node is also annotated
with the distance between its two children. In graphical representations of den-
drograms, this is usually visualized by the height of these nodes.

Ezxample 3. An example dendrogram can be seen in Figure 1. The dashed and
dotted lines may be ignored for now. The dendrogram shows a clustering over
six input vectors, labeled A to F. The distance between nodes can be seen on
the y-axis. For instance, the distance between vectors {B} and {C} is 1, while
the distance between their combined cluster {B, C} and vector {A} is 2.
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A B C D E F

Fig.1: A simple dendrogram

In this paper, we will focus on agglomerative hierarchical clustering [19],
which builds the dendrogram by assigning each vector to its own cluster and
then combines the two closest clusters until a full dendrogram has been built.

To combine the two closest clusters, it is necessary to not only measure the
distance between two vectors but also between larger clusters. To this end, a
linkage criterion is needed. Given two clusters ¢ and d, some established linkage
criteria are (1) the single linkage criterion, which picks the minimum distance
between two vectors from ¢ and d, (2) the complete linkage criterion, which picks
the maximum distance between two vectors from ¢ and d, or (3) the average
linkage criterion, which takes the average of all distances between vectors from ¢
and d.

Most combinations of distance measure and linkage criterion can be applied
to a given hierarchical clustering problem. The results may, however, vary heavily
depending on the application.

To obtain a concrete clustering from a dendrogram, one fixes a distance
threshold. The final clustering is then made up of the nodes whose distances
lie just below the distance threshold and whose parent nodes are already above
it. In graphical representations, the distance threshold can be indicated by a
horizontal line, making the clusters easily visible.

Ezample 4. The dashed line in Figure 1 represents a distance threshold of 3.5.
Following this threshold, the dendrogram would be split into the two clus-
ters {4, B,C} and {D, E, F'}. Using a smaller distance threshold of 2.5, indicated
by the dotted line, would result in the three clusters {4, B,C}, {D}, and {E, F'}.

The following section shows how we utilize hierarchical clustering in our novel
SMT(LRA) learner.

3 Using Dendrograms for SMT(LR.A) Learning

In this section, we introduce our novel SMT(LRA) learner. We describe how
the hierarchical clustering is used to guide its search and discuss the resulting
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algorithm which we call SHREC1. We start with the general idea in Section 3.1,
followed by the algorithm in Section 3.2 and finally optimizations in Section 3.3.
In Section 4 we present the algorithm SHREC?2 to trade-off some accuracy for a
further increase of scalability.

3.1 Main Idea

The main scalability problem of exact approaches for SMT(LRA) learning lies in
the large combined encoding that is needed to describe a full CNF. This encoding
quickly becomes hard to solve for SMT solvers when the number of clauses and
halfspaces is increased. We, therefore, propose to not learn the target CNF as a
whole, but rather to learn single clauses and then combine them into the target
formula.

When looking at the structure of CNF formulas, it becomes apparent that
positive examples need to satisfy all individual clauses, while negative ones only
need to unsatisfy a single one. If one had a perfect prediction, which negative
examples belong to which clause, one could simply learn each clause on its own,
using a simpler encoding, and still obtain an exact solution. But even an imper-
fect prediction, which needs some additional clauses, would yield a correct and
relatively small solution.

We propose a novel heuristic that produces such a prediction using agglom-
erative hierarchical clustering. The clustering algorithm partitions the negative
examples into groups of closely related examples given their values in the assign-
ment a.. This is due to the intuition that it is easier to find a single clause for a
set of closely related examples as opposed to an arbitrary one. The reason to use
hierarchical clustering as opposed to other clustering algorithms is the ability to
seamlessly adjust the number of clusters and thus the number of clauses in the
target formula.

To obtain a suitable clustering vector, we normalize the examples. For Boolean
variables, the values of T and L are replaced with 1 and 0, respectively. The
values a,(r) of real variables r are translated into the form %, where 7,
and 7,4, are the smallest and highest possible values for variable r, respectively.
If those values are not known beforehand, they can simply be estimated from
the existing data. This normalization ensures that all feature values lie in the
interval [0, 1], which results in each variable having a similar influence on the
clustering outcome.

3.2 Algorithm SHREC1

The full algorithm SHRECT is described in Algorithm 1. The algorithm receives
as input a set of examples E and returns a formula ¢ consistent with E. The first
step of the algorithm is the function BUILD-DENDROGRAM, which uses agglomer-
ative hierarchical clustering to build a dendrogram from the negative examples.
The function uses the normalization procedure described in the previous section.
Please note that BUILD-DENDROGRAM is agnostic to specific distance metrics and
linkage criteria.
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Algorithm 1 Algorithm SHREC1
Input: Example set F
Output: SMT(LRA) formula ¢

1. function LEARN-MODEL(E)

2: Ny + BUILD-DENDROGRAM(E"')

3: cost <— wy,

4 loop

5: k+1

6: while wy, - k < cost do

7 o< T

8 nodes < SELECT-NODES(Ny, k)
9: h<+0

10: valid < T

11: for all N; € nodes do

12: cost-bound < cost —wy -k —wp - h
13: h' 1) < SEARCH-CLAUSE(N;, cost-bound)
14: if 1/} = @ then

15: valid <+ L

16: break

17: else

18: P~ PNY

19: h<+< h+h

20: if valid then

21: ‘ return ¢

22: else

23: ‘ k< k+1

24: cost < NEXT-COST(cost)

25 function SEARCH-CLAUSE(N;, cost-bound)
26: h<+0

27! while wy, - h < cost-bound do

28: w < ENCODE-CLAUSE(ET U N;, h)
29. 1) < SOLVE(w)

30: if ¢ # () then

31: ‘ return h,

32: h«<h+1

38: return h, ()

The resulting dendrogram is referred to by its root node Ny. Each subsequent
node N; has a unique, positive index i. As we do not need to distinguish between
a node and the set of examples covered by it, we use N; to refer to both the
node N; and its example set.
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The algorithm is composed of several nested loops. The outermost loop
(Lines 4-24) searches for a solution with increasing cost. Similar to INCAL, the
cost is determined using a linear cost function wy - k + wp, - h. The algorithm
starts with the cost value set to wy in the first iteration, allowing a solution
with exactly one clause and no halfspaces. After each iteration, the cost is in-
cremented, increasing the search space.

Since for each cost value multiple combinations of k and h are possible, the
next loop (Lines 6-23) starts with & = 1 and keeps increasing the number of
clauses k in each iteration. This, in turn, decreases the number of possible half-
spaces. In each iteration, k nodes are selected from the dendrogram through an
appropriate distance threshold and stored in the variable nodes. The algorithm
then tries to find a clause consistent with each node N; using as few halfspaces
as possible. This is done in the function SEARCH-CLAUSE. If clauses for all nodes
could be found within the cost bound, they are combined (Line 18) and the
resulting CNF formula is returned. Since each clause satisfies all positive exam-
ples and each negative example is unsatisfied by at least one clause, this trivial
combination yields a consistent CNF.

The function SEARCH-CLAUSE constitutes the innermost loop of the algo-
rithm. Given a node N; and the remaining cost left for halfspaces, the function
tries to find a clause that is consistent with all positive examples and the nega-
tive examples in ;. To keep the cost as low as possible, an incremental approach
is used again, starting the search with 0 halfspaces and increasing the number
of possible halfspaces h with each iteration. To find a clause for a fixed set of
examples and a fixed number of halfspaces, an SMT encoding is used in Line 28.
This encoding is a simplified version of the encoding from INCAL and uses the
following variables: [, and fb with b € B encode whether the clause contains b
or its negation, respectively; a;, and d; with » € R and 1 < j < h describe the
coefficients and offset of halfspace j, respectively; s.; withe € Eand 1 <j<h
is an auxiliary variable encoding whether example e satisfies halfspace j.

The overall encoding for a single example e can now be formulated with only
two parts, i.e., (1) the definition of s.;, which is identical to INCAL’s

h

/\ Sej = ZajT ~ae(r) < dj,
j=1 reR

and (2) the constraint which enforces consistency of e with the learned clause

h

\ sei v/ ((lb A ae (b)) V (z}, A ﬁae(b))) . if 6% (ae)
j=1 beB
/h\ TSej V /\ ((ﬁlb V —ae (b)) A (ﬁib \Y ae(b))) ,  otherwise.
j=1 beB

The full encoding is the conjunction of the encodings for all examples in ET UN;.
Like INCAL, SHRECI also uses an incremental approach. First, we only generate
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the above encoding for a few examples and then iteratively add more conflicting
examples.

The function SOLVE in Line 29 takes an encoding, passes it to an SMT solver,
and if a solution to the encoding is found, it is translated back into an SMT(LRA)
clause. Otherwise, SOLVE returns 0.

If a clause could be found within the cost bound (Line 30), it is returned
together with the number of halfspaces used. Otherwise, §) is returned together
with the highest attempted number of halfspaces.

This basic algorithm can be further improved in terms of runtime and cost
by two optimizations described in the next section.

3.3 Result Caching and Dendrogram Reordering

The algorithm SHREC1 as described above suffers from two problems, namely
(A) repeated computations and (B) an inflexible search, which we will both
discuss and fix in this section.

First, we address issue (A), that SHREC1 re-computes certain results multi-
ple times. When a node is passed to the function SEARCH-CLAUSE together with
some cost-bound, a consistent clause is searched using up to % halfspaces.
In later iterations of the algorithm’s main loop, SEARCH-CLAUSE is called again
with the same node and higher cost-bound. This leads to the same SMT encod-
ing being built and solved again. To avoid these repeated computations, each
node caches the results of its computations and uses them to avoid unnecessary
re-computation in the future.

Second, SHREC1 never modifies the initial dendrogram during the search,
making the approach inflexible. We address this issue (B) in the following. If
the initial clustering assigns only a single data point to an unfavorable cluster,
this might lead to a much larger number of clauses needed to find a consistent
formula. This, in turn, leads to a lower accuracy on new examples as well as a
higher runtime. To counteract this problem, we apply a novel technique, which
we call dendrogram reordering: whenever a clause ¥ has been found for a given
node N; and some number of halfspaces h, it might be that v is also consistent
with additional examples, which are not part of N;, but instead of some other
node N;. To find such nodes N;, a breadth-first search is conducted on the
dendrogram. If some node NN, has been found such that Ve € N; : ¢(a.) = ¢*(ae),
the dendrogram is reordered to add IV; to the sub-tree under ;. This does not
increase the cost of N;, because the new examples are already consistent with v,
but might reduce the cost of N;’s (transitive) parent node(s).

Figure 2 illustrates the reordering procedure, which consists of the following
steps: (1) Generate a new node Nj and insert it between N; and its parent.
Consequently, Ny’s first child node is IV; and its parent node is N;’s former
parent node. Set Nj’s cached clause to 9. (2) Remove N; and its whole sub-tree
from its original place in the dendrogram and move it under Ny as Ni’s second
child node. (3) To preserve the binary structure of the dendrogram, N;’s former
parent node must now be removed. The former sibling node of IV; takes its place
in the dendrogram.
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(c) After step 2 (d) Final result

Fig. 2: Dendrogram reordering

This way, additional examples can be assigned to an already computed clause,
reducing the complexity in other parts of the dendrogram, too, inherently. Con-
sequently, the reordering can only decrease the overall cost of the dendrogram
and never increase it. Therefore, dendrogram reordering can handle imperfect
initial clusterings by dynamically improving them.

4 TImproving Runtime using Nested Dendrograms

In the previous section, we introduced a novel SMT(LRA) learner with improved
runtime compared to INCAL (as we will demonstrate by an experimental evalu-
ation in Section 5) without a significant impact on the quality, i. e. the accuracy
of the resulting formulae. In real-world applications, however, an even faster and
more scalable algorithm might be preferred, even with minor losses of accuracy.
In this section, we propose a technique for nested hierarchical clustering to realize
this trade-off. We call this algorithm SHREC2.

4.1 Main Idea

While SHREC1 is already expected to reduce the runtime of the SMT(LRA)
learner, it still has to solve relatively complex SMT constraints to find a consis-
tent clause. To further improve runtime, we again reduce the complexity of these
SMT solver calls. The algorithm SHREC2 starts just like SHREC1 by clustering
the negative examples and then searching for clauses consistent with the dif-
ferent clusters. However, instead of searching for consistent clauses through an
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SMT encoding, SHREC?2 also clusters the positive examples, ultimately leaving
only the learning of single halfspaces to the solver. This is realized through a
simpler encoding, shifting the algorithm’s overall complexity from exponential
to polynomial runtime.

When searching for a single clause, negative examples must not satisfy any
literal of the clause, while positive examples only have to satisfy a single literal
each. This fact can now be used to learn literals one by one. To this end, nested
dendrograms are introduced.

We, therefore, extend our definition of dendrograms from the previous sec-
tions. A dendrogram that clusters negative examples like the one used in SHREC1
is called a negative dendrogram from now on. Its nodes are called negative nodes
denoted as N;-. In SHREC2, we also use positive dendrograms, which analo-
gously cluster the positive examples. Each node N;* of the negative dendrogram
is assigned a new positive dendrogram NJO. Each positive node Nz—'—] holds a set
of positive examples from ET which again are being clustered just like their
negative counterparts.

Given a negative node N;* and some halfspaces h, SHREC? first finds all
Boolean literals that are consistent with the examples in N;-. Because the
cost function is only dependent on the number of clauses and halfspaces, these
Boolean literals can be part of the clause without increasing the cost. Then, all
positive examples that are inconsistent with any of the Boolean literals are de-
termined. These examples constitute N;!y. The positive dendrogram under N,
is built in the same manner as the negative dendrogram, using the same normal-
ization scheme. Values of Boolean variables are however left out of the clustering.

To find a set of halfspaces that are consistent with the remaining positive
examples as well as the negative examples in N;-, an encoding is generated for
each of the top h nodes from NZTO matching them with individual halfspaces.

4.2 Algorithm SHREC2

Algorithm 2 describes the algorithm SHREC2. The main function (LEARN-
MODEL) is identical to the one in Algorithm 1. The difference here can be found
in the function SEARCH-CLAUSE, which tries to learn a clause given a set of
negative examples and a cost bound.

The function starts by computing the set L of all literals that are consistent
with all negative examples in N;- (Line 4). It then computes the subset E’ of all
positive examples not consistent with any literal in L (Line 7). These remaining
examples need further literals to be consistent with the clause. Consequently,
if £’ is already empty at this point, the disjunction of the literals in L is already
a consistent clause and can be returned.

Otherwise, additional literals are needed. Because any further Boolean literals
would be inconsistent with the negative examples, halfspaces are needed. To find
a reasonable assignment of examples in E’ to halfspaces, hierarchical clustering
is used again. Instead of clustering the negative examples, the algorithm clusters
the positive ones in E’. Since Boolean values have no influence on the halfspaces,
they are not used in this clustering.
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Algorithm 2 Algorithm SHREC2

Input: Example set F
Output: SMT(LRA) formula ¢

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

. function LEARN-MODEL(FE)

. function SEARCH-CLAUSE(N;-, cost-bound)

L+ {beB|Vee Nt :a.(b)=_1}U
{=b|be B,Ye € Ni* 1a.(b) =T}
Ve Vieg!
(R
E' «{ecE" |Y(a.) =1}
if B/ = () then
return 0,y
N,y = BUILD-DENDROGRAM(E’)
h+1
while wy, - h < cost-bound do
(R
nodes < SELECT-NODES(N,|;, )
valid < true
for all NZTJ € nodes do
w ¢ ENCODE-HALFSPACE(N;" U N;|;)
0 + SOLVE(w)
if 6 =) then
valid + false
break
else
| Yy Vve
if valid then
return h,
else
| heh+1
return h, ()

> identical to SHREC1

The remainder of the algorithm is now very similar to the process in the main

function. The algorithm increases the number of halfspaces in each iteration,
starting at 1, until a solution has been found or the cost bound has been reached.
In each iteration, the top A nodes from the positive dendrogram are selected. For

each node N."

1,57

the algorithm tries to find a halfspace for the examples in N;-

and Nsz via an encoding. If no such halfspace exists, the algorithm retries with
an increased h. If halfspaces could be found for all nodes, a disjunction of those
halfspaces and the literals in L is returned as a consistent clause.
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The encoding for a single example e € E is a simplified version of the one
used in SHREC1, which uses variables a, and d, describing the coefficients and
offset of the halfspace, respectively. The encoding now only consists of a single
constraint per example:

Zar~ae(r) > d

reR

where 1 is < if ¢*(a.) = T and > otherwise. The full encoding is again the
conjunction of the encodings for all examples. Like in INCAL and SHRECI,
examples are also added iteratively. Please note that the encoding of SHREC2 is
only a linear program instead of a more complex SMT(LRA) encoding, making
it solvable in polynomial time.

SHREC?2 also uses result caching and dendrogram reordering in both levels
of dendrograms. Besides, the positive dendrograms are computed only once for
each negative node N;- and are immediately cached for faster access.

5 Experiments

In this section, we evaluate the capabilities and applicability of the proposed
algorithms SHREC1 and SHREC2. We have implemented them in Python us-
ing the SMT solver Z3 [7] version 4.8.6 64 Bit and the scikit-learn package [17]
version 1.3.1 for the hierarchical clustering. To this end, we conducted case stud-
ies and compared the results in terms of accuracy and runtime to INCAL. We
ran all evaluations on an Intel Xeon E3-1240 v2 machine with 3.40 GHz (up
to 3.80 GHz boost) and 32 GB of main memory running Fedora 26. In the fol-
lowing, we give detailed insight into the experimental setup in Section 5.1. We
present the comparison of our approaches to INCAL in Section 5.2.

5.1 Experimental Setup

Due to the poor scalability of current approaches, no suitable real-world bench-
marks for SMT(LRA) learning exist yet. In addition, benchmarks for SMT solv-
ing like the SMT-LIB collection are usually either unsatisfiable or only satisfied
by few assignments, meaning they do not produce adequately balanced exam-
ple sets. Therefore, experiments have to be conducted on randomly generated
benchmarks. To this end, we use an approach similar to [13]: Given a set of pa-
rameters consisting of the number of clauses (k) and halfspaces per clause (h),
we generate a CNF formula fitting these parameters. The generation procedure
is also given a set of 1000 randomly generated assignments from variables to
their respective values. The formula is then generated in such a way, that at
least 30% and at most 70% of those assignments satisfy it. To ensure that the
formula does not become trivial, it is also required that each clause is satisfied
by at least 3—,?% of assignments that did not satisfy any previous clause. This
ensures, that each clause has a significant influence on the formula and cannot
be trivially simplified.
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Fig. 3: Runtime comparison for different values of h

Since the main focus of SHREC is the improved scalability on larger for-
mulae, we (similar to [13]) generated benchmarks with increasing k and h and
fixed all other parameters to constant values. All generated formulae have 4
Boolean variables, 4 real variables, and 3 literals per clause. The benchmarks
have between 1 and 25 clauses and between 1 and 3 halfspaces per clause, re-
sulting in 75 different parameter configurations. We expect a higher number of
clauses or halfspaces per clause to generally result in a harder benchmark. Since
we cannot precisely control the difficulty, however, some smaller formulae might
turn out to be more difficult than other larger ones. To mitigate these random
fluctuations, we generated 10 formulae for each configuration, resulting in a total
of 750 benchmarks.

For each benchmark, 1000 examples were randomly drawn. Boolean variables
had an equal probability to be assigned to T or L. Real values were uniformly
distributed in the interval [0,1).5

We used INCAL, SHREC1, and SHREC?2 to find a CNF formula consistent
with all examples. All three algorithms used a cost function with equal weights
for clauses and halfspaces (wy = wp, = 1). For each run, we measured the
runtime and the accuracy on another independent set of 1000 examples. We set
a timeout of 30 minutes for each run. This timeout is substantially longer than
the one used in [13] and allows us to adequately observe the effect of the different
configurations.

In the following section, the results are presented and discussed.

5.2 Comparison to INCAL

As mentioned in Section 3, SHREC1 and SHREC2 are able to use various dis-
tance metrics and linkage criteria in their clustering routine. To determine the
most effective combination, we ran some preliminary experiments on a subset
of the generated benchmarks. We evaluated the Manhattan distance, Euclidean
distance, and the L., norm as possible distance metrics and the single, com-
plete and average linkage criteria. Out of the nine possible combinations, the

5 Please note that the choice of the interval does not influence the hardness of the
learning problem because smaller values do not make the SMT solving process easier.
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Fig. 4: Accuracy comparison for different values of h

Manhattan distance together with the average linkage criterion performed best.
Therefore, this combination is used in the following comparison with INCAL.

Figure 3 shows the runtime for 1, 2 and 3 halfspaces per clause, respectively.
On the x-axis, the number of clauses from & = 1 to k£ = 25 is shown. The y-
axis shows the runtime in seconds. Each data point covers the runs on the 10
different benchmarks for the respective configuration. The squares, circles, and
triangles mark the mean of all 10 runtimes, while the vertical error bars show
the standard deviation. Runs that timed out were included in the calculation of
mean and standard deviation as if they needed exactly 1800 seconds. If all runs
of one configuration timed out, no data point is shown.

As expected, the number of clauses and halfspaces increases the runtime of all
three algorithms. However, we can observe that the increase in runtime becomes
smaller at a higher number of clauses. INCAL already times out at k£ > 5 for
benchmarks with a single halfspace per clause and even at k > 3 for benchmarks
with 2 or 3 halfspaces per clause. SHRECI is able to handle larger benchmarks
better, but still times out at k > 8, k > 6 and k > 4 for h = 1, h = 2,
and h = 3, respectively. On instances where neither INCAL nor SHRECI1 time
out, SHREC1 is consistently considerably faster. SHREC2 is a lot more robust for
increasing k and h and does not time out for any benchmark. SHREC2’s runtime
stays far below that of INCAL and SHRECI for almost all of the benchmarks.
This indicates SHREC2’s superior scalability in terms of runtime, outperforming
INCAL and SHREC1 by a large margin.

Naturally, we expect this success to come with a trade-off in the form of
lower accuracy. Figure 4 shows the accuracy for 1, 2 and 3 halfspaces per clause,
respectively. As before, each data point shows the mean and standard deviation
of 10 benchmarks. Timeouts were not considered in the calculation this time.
Configurations with 10 timeouts again have no data point displayed. As expected,
the accuracy of all three algorithms is lower for larger problems. This is because
a more complicated CNF needs to be found with the same number of examples.
One can also observe, that SHREC1 and especially SHREC2 suffer more from
this decrease in accuracy than INCAL. However, as Figure 4a shows, SHREC1’s
accuracy still stays above 95% even for benchmarks with up to 7 clauses.

The decrease of accuracy is only crucial for larger values of k and h, which
were not solved by INCAL at all. If given enough time, we can also expect INCAL
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to show a lower accuracy for these harder benchmarks. For the benchmarks which
were solved by INCAL, SHREC1 and SHREC2 stay very close to 100% accuracy,
as well. If one wants to compensate for the lower accuracy in other ways, the
improved scalability of SHREC1 and SHREC2 could also be utilized to simply
incorporate more training examples that can be handled due to better scalability.

Overall, the experimental results clearly show that SHREC is superior to the
state-of-the-art exact approach INCAL in terms of scalability. SHREC1 needs
considerably less runtime to learn formulae with only a slight loss of accuracy,
while SHREC2 was several magnitudes faster and still kept the accuracy at a
reasonable level.

6 Conclusion

In this work, we proposed a novel approach for SMT(LRA) learning. Our ap-
proach, SHREC, incorporates hierarchical clustering to speed up the learning
process. Additionally, we presented two specific algorithms exploiting our find-
ings with different objectives: SHREC1 aims for high accuracy of the learned
model while SHREC2 trades-off accuracy for runtime, yielding a scalable ap-
proach to tackle even harder problems.

Our conducted experimental evaluation supports these claims. When com-
pared to the state-of-the-art algorithm INCAL, our results clearly show that
SHRECI outperforms INCAL in terms of runtime with almost no loss of accu-
racy. SHREC2 on the other hand can handle benchmarks for which INCAL and
SHRECI1 timeout.

The better scalability permits our approach to handling interesting real-world
problems on a larger scale. This opens up new possibilities on a variety of appli-
cations and enables future research in the domain.
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